
Tech Talk: DevOps
GSA Digital Service

A long time ago in an agency far,
far away....

I’d like to open with a real story.

A long time ago, in an agency far, far away…

One of the users of an app needed to search records by zip code. The app data
already included zip codes, the search results already printed zip codes, and there
was already a search form. The only thing missing was a zip code field on the search
form. She contacted IT and asked them to add a zip code search feature. IT sent
back an estimate: it would cost tens of thousands of dollars and it would be done next
year. Just for a basic search field. That’s a big problem for sure, so let’s think about
what was causing that problem.

The problem couldn’t be in requirements analysis: The user story was clear and
simple enough.

The problem couldn’t be in development: This basic change would have taken the
developer a couple of hours to implement and write a unit test.

The problem couldn’t be in testing: Even with manual QA testing, this change would
only add a few minutes to the testers’ work.

The problem couldn’t be in security: There was no substantial change to the app, the
security controls, the security categorization, the type of data, or any functionality that
might affect security or privacy.

The problem couldn’t be in operations: Such a minor change that didn’t even require a
database update wouldn’t require any special handling during deployment.

So where was the problem? Within each individual team, everything seemed fine. The
problem was in between and, really, it was everywhere. It was the way things were
being handed off: each team was using the Wall of Confusion method. This is the
traditional method that often comes as a side effect of organizational structures or the
waterfall lifecycle, in which each team throws a batch of changes over a wall to the
next team. They don’t have a clear sight of whether the next team is ready to catch it,
and they can only hope the next team doesn’t drop it.

How did this problem translate to an excessive price tag and a lead time of many
months? A couple of reasons.

First, the processes were largely manual, so everyone had a tendency to do things in
large batches containing many changes. This way, they only had to open one ticket to
deploy a few dozen changes, rather than doing a few dozen tickets. The thinking was
that the operations staff could just manually deploy one package of changes rather
than deploy each individual change. The security team would perform a single scan of
the app in the test environment with many changes applied to it. This type of batch
work was necessary due to the manual processes. Imagine the hassle of individually
deploying many small changes. In their situation, it made perfect sense to go in large
batches even if that meant one small change in the batch wouldn’t be available until
all the other changes were ready.

Second, due to the Wall of Confusion standing between the teams, there was little
feedback between the teams. This led to a tendency to kick the can down the road: If
the package didn’t break horribly on your team, that means it was ready to pass on to
the next team. For instance, developers wrote documentation on how to deploy the
package, and assumed it would work in production. It didn’t always work. In fact, even
though operations followed the instructions and the deployment returned no errors,
unseen parts sometimes broke. This lack of feedback meant that if something went
wrong, it was often discovered at the deployment phase or reported by users. The
issue then had to go all the way back to the analysts and developers for rework.

Because of this manual work and the chances of discovering issues late in the
process, it was an risky and lengthy process just to incorporate a small change. The
IT organization knew the risks involved with introducing even a small change, and
estimated it appropriately. That is how they came up with the high price tag and long
lead time. Given the situation, their estimate was absolutely correct.

In this Tech Talk, let’s see how DevOps could have helped these teams get the
change out faster, at a lower cost, and with less risk.

culture + practices + tools
=

faster delivery + better quality

DevOps, ultimately, is about optimizing flow of work through an IT organization in
order for the business to more efficiently deliver value to the customer.

It is a collection of practices that unify the various teams that are involved in creating
applications. Although DevOps is named after two traditionally siloed organizations,
development and operations, it actually brings together analysts, developers, QA,
security, operations, and any other teams that are involved in creating applications.
DevOps introduces new practices and prescribes the use of automated tools for all of
these teams. The goal is to deliver changes faster with better quality. It sounds
paradoxical that a methodology that increases the velocity of changes would also
improve quality, but this is exactly the effect that one sees in organizations that
embrace DevOps.

These days, it’s not unusual for a modern technology business like Netflix or Etsy to
deploy their product 50 or more times a day.

Today, we’ll take a high-level look at DevOps and the practices that enable modern IT
organizations to deliver changes so rapidly. While we won’t go into specifics on how
to build a DevOps shop, I hope this will spark an interest in growing the DevOps
culture here at GSA. We’ll start by looking at the Three Ways, which were suggested
by Gene Kim as the overarching principles of DevOps. He has written several books
on the topic, so I recommend looking him up in the library.

The First Way
Systems thinking

The
Customer

The
Business

The First Way of DevOps is systems thinking. In systems thinking, we depart the
territory of siloed teams and think about the overall goals and how the entire system
works to deliver an application from the business to the customer. You want this
delivery to occur at the highest velocity possible. When you’re applying DevOps
principles, you need to look at the performance of the entire system, and not the
individual silos.

You’ll notice that on this diagram, you have the business on the left, and it is
delivering services to the customer on the right. Somewhere in between these two
actors lies IT and all its teams: development, QA, security, and operations. But in
systems thinking, we want to focus on the overall picture. We want this line between
the business and the customer to be executed as efficiently as possible. Every
decision that IT makes must consider this line on the diagram. No matter what IT
organization you work for, your primary goal is making work flow from left to right in
the most efficient way possible.

When thinking about how to make this flow more efficient, any optimization a team
makes must be an optimization for the overall system. That is, if a team develops a
local optimization that helps it meet or exceed its goals, but realizes it will have an
adverse effect on the overall system’s goals, they should not implement it. Also, any
local optimization that has zero net effect on the overall system is possibly a wasted
effort; that time could have gone toward more productive work. Likewise, at the
management level, organizational and individual performance plans should be written
in a way that encourages overall optimization and discourages local optimization if it

comes at the cost of the overall system.

Automation is one important optimization in DevOps. The more the development and
deployment process can be automated, the more efficient the overall system
becomes. Every organization will have different automation needs, and consequently
different tools. There is no one software package out there that provides DevOps in a
box. Every successful DevOps shop uses a collection of various tools, each of which
excels at its particular job.

Another general optimization each individual or team can make is to limit how much
work they take in at once. This is called work in progress, or WIP. For instance, a
developer might be tasked to work only on one user story at a time. The reason we
want to limit WIP is so that the work gets done faster. The more WIP a team has, the
more they have a tendency to switch between the various units of work before
completing one, causing a bottleneck in the overall system.

In parallel to the concept of less WIP, you also want to have smaller batch sizes.
Batch size refers to the amount of work that is moved in a group from one step to the
next. For instance, a single application update could contain 20 different changes in
one release. This means the release has a batch size of 20. In this case, the
development team would build a package containing 20 changes and hand it off to
operations. Operations would deploy those 20 changes to production in one
deployment. In general, the smaller this number, the better. The best case is a batch
size of one. But passing work from one step to the next involves a certain amount of
overhead, and this overhead dictates how small your batches realistically will get.

The traditional approach

Develop:

Add zip code field

Update nav menu

Framework upgrade

Fix login issue

Add new report

Performance fix

OpsDev Customer

Day 1

I would like to propose a scenario to clarify how smaller batch sizes are beneficial.

Here, we’ve illustrated a traditional approach: a small development team has taken on
six tickets. One of these tickets is a highly anticipated zip code search field that our
customer wanted. The plan is to release all of these changes at once in a single
deployment. So that means we have a single batch with a size of 6. They only have to
open one ticket for operations to deploy everything. All in all, let’s say that these
changes will take 15 days, or three weeks. The zip code field is only one day, but the
other changes are pretty sizable. For instance, the framework upgrade ticket will take
4 days because it’s a complex change. So, assuming all goes smoothly, the customer
will wait three weeks before they can use their new zip code search feature, but they
also receive all the other changes at the same time at the end of those three weeks.

The traditional approach

Deploy:

Add zip code field

Update nav menu

Framework upgrade

Fix login issue

Add new report

Performance fix

OpsDev Customer

Where’s my
stuff?

Day 15

Three weeks have passed. The dev team has finished coding, and has handed off the
completed package to operations. During a maintenance window, operations
personnel log in to the servers and deploy the updated app.

Unfortunately, it’s a no-go, because the framework upgrade isn’t working in
production. Since all six changes were batched together, operations sends it all back
to development, rolling back production to the previous version. Now the operations
and development teams have to figure out which change went wrong. It could be any
of the six changes. They have to perform an analysis before they can confirm it was
the framework upgrade.

Although this means the dev team only has to fix one issue, it delays all six changes.
The dev team fixes the framework issue within a few days, and is ready to reattempt
the deployment. But now the next maintenance window operations has isn’t for
another couple of weeks. Operations has to carefully plan out maintenance windows
because they only have so many system administrators that can perform a
deployment at any given time.

We eventually do get a happy ending: the customer got their new features. But
because of one failure, it took a long time for the customer to get any of these
features, even the small ones that only took a few hours to implement.

You can bet there’s a better way to do this.

The First Way: Smaller batch sizes

OpsDev Customer

The Backlog:

Update nav menu

Framework upgrade

Fix login issue

Add new report

Performance fix

Develop:

Add zip code field

Day 1

Now let’s look at how these changes could be deployed in an organization that has
successfully applied the First Way of DevOps, where they’ve optimized their system
by reducing their deployment batch size to 1.

A batch size of 1 is certainly a viable batch size in DevOps when you have a highly
automated deployment pipeline. This means a developer works on the zip code field,
and when they’re done, they check in the code and an automated continuous
integration system generates a package that operations can deploy.

In this case, the continuous integration system has generated a deployable package
containing the zip code field change.

The First Way: Smaller batch sizes

Develop:

Update nav menu

OpsDev Customer

Deploy:

Add zip code field

The Backlog:

Framework upgrade

Fix login issue

Add new report

Performance fix

Day 2

Once the deployment package for the zip code change has been created, operations
can deploy it. Like the dev team, operations has automated their part of the process,
meaning the infrastructure is automatically deploying this package. Operations
doesn’t have to manually deploy it; they just have to keep an eye on the automated
deployment to make sure everything runs smoothly. In the meantime, now that the
dev team has completed their work on the zip code field, they can move on to the nav
menu ticket. Also, freed up from having to perform manual deployments, operations
can focus on improving the infrastructure.

The First Way: Smaller batch sizes

Develop:

Framework upgrade

OpsDev Customer

Deploy:

Update nav menu

Use:

Add zip code field

The Backlog:

Fix login issue

Add new report

Performance fix

Day 3

Thanks to operations automating their deployment process, the zip code field quickly
goes into the production environment where the customer can use it right away. At
the same time, the development team has completed the nav menu change, and that
package has been picked up by operations and is on its way to production too. This
means the dev team is now focused on their next task, which is upgrading the app’s
framework.

The First Way: Smaller batch sizes

Develop:

Fix login issue

OpsDev Customer

Deploy:

Framework upgrade

Use:

Add zip code field

Update nav menu

The Backlog:

Add new report

Performance fix

Day 6

At this point, it’s been six days. That’s one day to develop the zip code field change,
one day to develop the nav menu change, and four days to develop the framework
upgrade. Operations has successfully deployed the zip code field and the nav menu
changes. The customer now has the ability to use these new features. They didn’t
have to wait for all six changes to go through first.

Now operations is automatically deploying the upgraded framework as usual. Again,
let’s say this framework upgrade has a problem that causes it to not work well in
production for whatever reason. The tests in the automated deployment system rolls
back the framework upgrade. But that’s all right, the customer can keep on using the
two features they already received. At the same time, the automated deployment
system informs both operations and development that the framework upgrade has
failed. Now the development team has to return the framework upgrade to their
backlog and work on it. They can work on it now if it’s urgent, or they can continue
working on what they’re doing right now, which is the login issue, and get that out to
the customer.

This DevOps approach has three major differences in comparison with the traditional
method:

First, all parties instantly knew which change caused the issue, and the issue was
easy to deal with. Since the batch size of the framework upgrade was just one,
rollback was fast, root cause analysis was easy, and the incident was short-lived. The
framework upgrade can now go back into the developers’ backlog.

Second, the impact on the customer was minimized because at least the customer
got some features from previous deployments, and any production downtime was
shorter due to the smaller deployment.

Third, the customer got the first two features as soon as the developers were done
writing them. They were able to become productive from these new features more
quickly. This is delivering value to the customer faster.

The Second Way
Amplified feedback loops

The
Customer

The
Business Dev Ops

The Second Way of DevOps is amplified feedback loops. Simply put, this is when
feedback flows quickly and efficiently from right to left, meaning from the customer all
the way back to development and also to the business. This feedback needs to come
constantly and quickly. Operations needs to understand what the customer is
experiencing: are apps loading fast or slow? Are customers able to log in? Are any
servers down? Developers need to know right away if a build is failing, or if customers
are having difficulty with a redesigned feature.

Feedback can come in many forms. Customers may report issues via a help desk, via
a web survey, or may even open an issue in the organization’s open source
repository. Analytics can provide information on how customers are actually using the
app. Automated monitoring can reveal whether the infrastructure is healthy, and what
parts of the code are causing a performance bottleneck. Audit logs can be scanned to
reveal suspicious activity for the security team to take action on. Teams can make
others aware of their status via a dashboard or opening up their issue tracking
systems for viewing access. All these diverse sources of feedback need to be
carefully considered, and the important metrics should be selected and acted upon.

Not only is it important to constantly send and receive feedback, the IT organization
must also learn from it. Useful information gleaned from feedback should be
documented. Patterns should be recognized and documented.

The Second Way: Amplified feedback via automation

SecDev CustomerOpsQA

Automated builds

Automated unit

tests

Automated

integration tests

Automated

functional tests

Automated port

scans

Automated code

analysis

Automated

infrastructure

Automated deploy

So far, our diagrams have been rather simple, showing only the development and
operations organizations. In reality, application development includes various other
teams, the specifics of which vary between different IT organizations. Regardless of
the name “DevOps” coming from development and operations, all of these teams
have a place in DevOps. In DevOps, all these teams have the same roles, but their
approach has to change. In the First Way, overall system efficiency is improved via
automation. QA can ensure that any required tests are automatically run on each
build, and test coverage meets their standards. Security can automatically run a static
code analysis tool whenever a developer checks in new code. If an issue is
discovered by any of these automated tools, the tool can halt the deployment and
raise a flag, sending the work back to the dev team. By consistently running these
automated checks along the way, IT can reduce risk and achieve faster delivery all at
once. QA and security still hold the developers’ code to a high standard. They just
take a different approach to implementing their work by thinking about how to make
the overall system more efficient.

The automation implemented by the First Way helps us achieve amplified feedback.
Consider all the automated tests performed by QA and security. If any one of these
tests fails, it’s immediately reported to the dev team and the deployment of that
particular batch is halted. The dev team can then add the issue to their backlog to be
prioritized and worked on like any other ticket. The developers don’t have to wait for
QA and security to manually write up test results. At the same time, QA and security
can actively monitor the results and make suggestions to the developers,
documenting these suggestions along the way. This builds a useful body of

knowledge.

The Third Way
A culture of experimentation and learning

The
Customer

The
Business Dev Ops

The Third Way of DevOps is creating a culture of experimentation and learning. There
are two main ideas behind this practice.

The first idea is that the IT organization should be open to experimentation. They
should build a culture where teams and individuals aren’t afraid to take on a bit of risk
and try something new. Experimentation leads to improvement. Everyone needs to
understand that failure is acceptable as long as you learn something from it. We’re
accustomed to reducing risk in as many ways as possible, so how can an
organization become accustomed to taking controlled risks? This is where the First
Way and the Second Way will help: By reducing batch size and having fast feedback,
you know that you can take small risks and you’ll know the results very quickly. If you
think about the batch size, automation, and amplified feedback from the First and
Second Ways, it becomes clear that one can take small, calculated risks and recover
very quickly if these experiments go wrong. In the era of commodity cloud servers that
can be provisioned and de-provisioned cheaply and quickly, it’s relatively easy to
safely perform production deployments that can be scrapped and rolled back. If you
recall, the First Way is about systems thinking, and about IT increasing the flow of
value from the business to the customer. Constantly improving this flow is a key
element of DevOps. An organization free to experiment will find ways to improve this
flow.

The second idea is that repetition leads to mastery. You can find this repetition in
doing exercises and drills, or you can find it by continuously taking small risks and
recovering from them when they go wrong.

In order to succeed in the Third Way, the IT organization must have trust,
transparency, tolerance for failure, and celebration of successes.

The Third Way: Failure as learning

OpsDev Customer

When the IT organization adopts the Third Way, failures are embraced as an
opportunity to learn and practice. Some organizations even intentionally cause
controlled failures to benefit from this opportunity.

Netflix came up with an unique idea: the Chaos Monkey. This is a tool that randomly
causes mischief in their infrastructure. It might crash a server or it might cause
network lag. The Chaos Monkey runs amok in their production environment. If you’ve
watched anything on Netflix, the Chaos Monkey is somewhere in there taking down
their servers. Netflix did this because they realized that failures are an excellent way
to learn. Controlled failures keep everyone alert. The Chaos Monkey forces the
developers to proactively make sure their code can gracefully recover from
unexpected events, and forces their operations staff to make sure the infrastructure is
robust.

Not every organization wants a Chaos Monkey running rampant in their cloud, but
there are other ways to learn from failure. One is via blameless postmortems when
there is a real failure. No matter how much risk is managed and no matter how
carefully everyone treads, something will go wrong at some point. It could happen to
anyone, so the best approach is to treat it as a learning opportunity rather than a time
to assign blame.

In our scenario from the First Way, when our deployment failed, DevOps principles
minimized the impact of that failure. A small batch size made it trivial to identify the
cause of the failure. Automation led to an amplified feedback loop, informing teams of

the failure. Automation also made it easier for operations to recover in production.
With these safety nets in place, the production environment is rugged and recovery
can occur in seconds or minutes. Failure is no longer such a terrible thing. This grants
organizations the leeway to experiment more via controlled risks. The ability to
experiment leads to learning, growth, and optimization of the flow of value from the
business to the customer. Because of the deployment failure, the development team
learned something new about the framework they’re using. The operations team
learned something new about the infrastructure and why the upgrade didn’t work in
the production environment.

culture + practices + tools
=

faster delivery + better quality

We’ve covered a bit of the cultural change and practices that are involved in a shift to
DevOps. If you can relate to the story about the zip code field at an agency far, far
away, then I hope you agree that building a successful DevOps shop is a worthy
endeavor. It is not easy because cultural change is hard, and there is no single
product out there that gives you all the DevOps tools you need in a box. But it is
absolutely doable and has tremendous benefits. The evidence is in the organizations
that have implemented it.

This Tech Talk has barely scratched the surface on how to implement DevOps, but I
hope it has piqued your interest in the subject. DevOps is a bottom-up approach,
starting with individuals buying into the idea. There is a wealth of information out
there, and I encourage you to continue pursuing more knowledge on the subject.

Thank you!

https://tech.gsa.gov/guides/

Jeff Fredrickson
jeffrey.fredrickson@gsa.gov

Get in touch with us at the Office of the CTO, and we can help you transform your IT
shop.

https://tech.gsa.gov/guides/
https://tech.gsa.gov/guides/
mailto:jeffrey.fredrickson@gsa.gov
mailto:jeffrey.fredrickson@gsa.gov

